
ISRAEL JOURNAL OF MATHEMATICS 168 (2008), 153–165

DOI: 10.1007/s11856-008-1061-7

ON AMENABILITY OF GROUP ALGEBRAS, I

BY

Laurent Bartholdi

Mathematical Institute, 3-5 Bunsenstraße, Georg-August Universät,

D-37073 Göttingen, Germany

e-mail: laurent.bartholdi@gmail.com

ABSTRACT

We study amenability of algebras and modules (based on the notion of

almost-invariant finite-dimensional subspace), and apply it to algebras

associated with finitely generated groups.

We show that a group G is amenable if and only if its group ring KG

is amenable for some (and therefore for any) field K.

Similarly, a G-set X is amenable if and only if its span KX is amenable

as a KG-module for some (and therefore for any) field K.

1. Introduction

Amenability of groups was introduced in 1929 by Von Neumann [8]:

Definition 1.1: A (discrete) group G is amenable if it admits a finitely additive

measure µ : 2G → [0, 1] such that µ(G) = 1 and µ(A t B) = µ(A) + µ(B) and

µ(Ag) = µ(A) for all disjoint A, B ⊆ G and g ∈ G.

This notion may serve as a witness to the “structure” of groups: either a

group is amenable, in which case it admits a right-translation invariant finitely

additive measure, or it is non-amenable, in which case it admits a “para-

doxical” decomposition in finitely many pieces, which can be reassembled by

left-translation in two copies of the original group; see [14]. More generally:

Definition 1.2: Let G be a group acting on the right on a set X . This action

is amenable if there exists a finitely additive measure µ : 2X → [0, 1] such
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that µ(X) = 1 and µ(A t B) = µ(A) + µ(B) and µ(Ag) = µ(A) for all disjoint

A, B ⊆ X and g ∈ G.

Under this definition, a group G is amenable if its action on itself by right-

multiplication is amenable. This definition will be reformulated in terms of

Følner sets (see Lemma 3.1).

1.1. Amenable algebras. The present note explores the notion of amenabil-

ity for associative algebras, which appeared in [1, 5]. Throughout this note,

K denotes an arbitrary field — although the results easily extend to integral

domains. We shall actually phrase it in the more natural language of modules:

Definition 1.3: Let R be an associative algebra, and let M be a right R-module.

It is amenable if, for every ε > 0 and every finite-dimensional subspace S of

R, there exists a finite-dimensional subspace F of M such that

dimK((F + Fs)/F )

dimK(F )
< ε for all s ∈ S.

The same definition holds, mutatis mutandis, for left modules.

The main result of this note is the following, proved in §3:

Theorem 1.4: Let K be any field, and let X be a right G-set. Then X is

amenable if and only if its linear span KX is amenable.

Letting G act on itself by right-multiplication, we obtain

Corollary 1.5: Let K be any field, and let G be a group. Then G is amenable

if and only if its group algebra KG is amenable.

The “only if” part of the corollary is claimed in [1], where the “if” part is

proven in case K = C. M. Gromov pointed out to me that the “if” part admits

a simple proof if K has characteristic 0.

Note that there exist non-isomorphic groups G, H such that ZG and ZH are

isomorphic; the first finite example was found in [7]. Corollary 1.5 therefore

states that passing from a group to its group ring may lose some information,

but does not affect amenability.

1.2. Acknowledgments. The author is grateful to Yves de Cornulier, Gábor

Elek, Anna Erschler, Misha Gromov, Tracy Hall, Fabrice Krieger, Nicolas
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Monod, and Christophe Weibel for generous feedback and/or entertaining and

stimulating discussions.

2. Convex sets

We recall the notion of Steiner point of a convex polytope [6, §14.3]. Let P

be a convex polytope in Rn. For x ∈ P set

C(x, P ) = {v ∈ S
n−1 : 〈x′ − x|v〉 ≥ 0 for all x′ ∈ P};

this is the set of outer normal vectors of half-spaces containing P and with x

on their boundary. Let ](x, P ) denote the normalized content of C(x, P ):

](x, P ) =
λ(C(x, P ))

λ(Sn−1)
, where λ denotes Lebesgue measure.

Note that if x is not an extremal point of P , then C(x, P ) is a singleton, so

](x, P ) = 0. For obvious geometric reasons the number ](x, P ) is called the

exterior angle of P at x.

Recall that the Minkowski sum of two polytopes P, Q is the polytope

P +̇Q = {x + y : x ∈ P, y ∈ Q}.

Lemma 2.1: C(x + y, P +̇Q) = C(x, P ) ∩ C(y, Q).

Proof.

C(x + y, P +̇Q) = {v ∈ S
n−1 : 〈x′ + y′ − (x + y)|v〉 ≥ 0 for all x′ ∈ P, y′ ∈ Q}

= {v ∈ S
n−1 : 〈x′ − x|v〉 ≥ 0 for all x′ ∈ P

and 〈y′ − y|v〉 ≥ 0 for all y′ ∈ Q}

= C(x, P ) ∩ C(y, Q).

Let V denote the set of extremal points of P ; then ](x, P ) is non-zero if and

only if x ∈ V . The Steiner point of P is

(1) m(P ) =
∑

x∈V

](x, P )x.

Up to measure-zero sets, {C(x, P ) : x ∈ V } is a partition of Sn−1, so∑
x∈P ](x, P ) = 1 and thus m(P ) ∈ P .

Proposition 2.2 ([11]): The function m is the only continuous R
n-valued
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function on convex polytopes in Rn that satisfies m(αA+̇(1 − α)B) =

αm(A)+(1−α)m(B) for any convex polytopes A, B and α ∈ [0, 1], and satisfies

m(gA) = gm(A) for any similarity g : Rn → Rn.

Let F be a subspace of the vector space Kn. For any S ⊆ {1, . . . , n}, let

πS : Kn → KS denote the projection (v1, . . . , vn) 7→ (vi)i∈S . Define

(2) XF =
{
S : πS restricts to an isomorphism F → K

S
}
.

Let ei be the i-th basis vector in Rn, and set

(3) VF =
{∑

i∈S

ei : S ∈ XF

}
, PF = the convex hull of VF , mF = m(PF ).

Lemma 2.3: All the v ∈ VF are {0, 1}-vectors. The sets XF and VF are non-

empty, and PF is a non-empty, closed, convex polytope in [0, 1]n.

Proof. The only non-trivial statements are that XF , and therefore VF and PF ,

are non-empty. Let S be maximal such that πS restricts to a surjection F → KS.

If πS |F were not injective, there would be v 6= 0 in ker(πS |F ); let k ∈ {1, . . . , n}

be a non-zero coefficient of v; then k 6∈ S and πS∪{k} is surjective from F onto

K
S∪{k}, since its image contains 0×K

{k} and projects onto K
S . This contradicts

the maximality of S. We therefore have S ∈ XF .

The proof of Theorem 1.4 hinges on the following

Proposition 2.4: Let E ≤ F ≤ Kn be subspaces. Then mE ≤ mF coordinate-

wise.

Lemma 2.5: Let E ≤ F ≤ Kn be subspaces. Then

(1) for every S ∈ XE there exists T ∈ XF with S ⊆ T ;

(2) for every T ∈ XF there exists S ∈ XE with S ⊆ T ;

(3) for every S ∈ XE , T ∈ XF and k ∈ S there exists ` ∈ T with

S \ {k} ∪ {`} ∈ XE and T \ {`} ∪ {k} ∈ XF .

Proof. (1) Consider D = ker(πS) ∩ F . By Lemma 2.3, there exists U ⊆

{1, . . . , n} such that πU : D → KU is an isomorphism. Clearly U ∩ S = ∅,

so T = S t U ∈ XF .

(2) Apply Lemma 2.3 to the inclusion πT (E) ≤ K
T .
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(3) Let (βi)i∈{1,...,n} be the standard basis of Kn. By lifting (βi)i∈S through

πS , construct a basis (εi)i∈S of E such that 〈εi|βj〉 = δij for all i, j ∈ S.

Similarly, construct a basis (φi)i∈T of F such that 〈φi|βj〉 = δij for all i, j ∈ T .

Since E ≤ F , we may write εk =
∑

`∈T α`φ`; and for all ` ∈ T we have

〈εk|β`〉 =
∑

`′∈T α`′〈φ`′ |β`〉 = α`. Therefore

1 = 〈εk|βk〉 =
∑

`∈T

α`〈φ`|βk〉 =
∑

`∈T

〈εk|β`〉〈φ`|βk〉;

so 〈εk|β`〉〈φ`|βk〉 6= 0 for some ` ∈ T . This implies that 〈εk|β`〉 6= 0, so

πS\{k}∪{`} : E → KS\{k}∪{`} is an isomorphism: its image surjects onto KS\{k},

and contains 0 × K
{`} = πS\{k}∪{`}(Kεk). Since πS\{k}∪{`} maps onto a space

of dimension #S, it is an isomorphism. We also have 〈φ`|βk〉 6= 0, which by

the same argument implies that πT\{`}∪{k} : F → KT\{`}∪{k} is an isomor-

phism.

Proof of Proposition 2.4. For ε ∈ [0, 1], let Pε = (1 − ε)PE+̇εPF be the

Minkowski linear combination of PE and PF . It is the convex envelope of

(1 − ε)VE + εVF . Set

Vε = {(1 − ε)x + εy : x ∈ VE , y ∈ VF , and x ≤ y coordinatewise}.

Lemma 2.6: Pε is the convex envelope of Vε.

Proof. If ε = 0, this follows from Lemma 2.5(1). If ε = 1, this follows from

Lemma 2.5(2). Suppose therefore ε ∈ (0, 1). It then suffices to prove that no

point of the form (1 − ε)x + εy with x ∈ VE , y ∈ VF and x 6≤ y is extremal.

Given such x, y, choose k ∈ support(x)\ support(y). By Lemma 2.5(3), there

exists ` such that x′ := x−ek +e` ∈ VE and y′ := y−e`+ek ∈ VF . Furthermore

k 6= ` because ` ∈ support(y). Now

(1 − ε)x + εy = (1 − ε)
(
(1 − ε)x + εx′

)
+ ε

(
εy + (1 − ε)y′

)

is a convex combination of non-extremal points of PE and PF , so is not an

extremal point of Pε.

Suppose now ε ∈ (0, 1). Let αε : Vε → VE be the map (1 − ε)x + εy 7→ x.

It truncates non-1 coordinates down to 0, and therefore satisfies αε(z) ≤ z

coordinatewise for all z ∈ Vε. By Lemma 2.5(1) this map is onto. By Lemma 2.6,

if y 6≥ x coordinatewise then (1 − ε)x + εy is not extremal in Pε, whence
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λ(C((1 − ε)x + εy, Pε)) = 0. By Lemma 2.1 we compute

∑

z∈α−1

ε (x)

](z, Pε) =
∑

z∈α−1

ε (x)

λ(C(z, Pε))

λ(Sn−1)
=

∑

y∈VF

λ(C(x, PE) ∩ C(y, PF ))

λ(Sn−1)

=
λ(C(x, PE))

λ(Sn−1)
= ](x, PE).

We conclude

m(Pε) =
∑

z∈Vε

](z, Pε)z =
∑

x∈VE

∑

z∈α−1

ε (x)

](z, Pε)(x + (z − x))

=
∑

x∈VE

](x, PE)x +
∑

z∈Vε

](z, Pε)(z − αε(z))

= m(PE) + something non-negative

≥ mE coordinatewise.

The conclusion holds for m(P1) = mF by continuity of m, see Proposition

2.2.

Note that #S = dimK F for all S ∈ XF , and ‖x‖1 = dimK F for all x ∈ VF ,

so ‖mF ‖1 = dimK F .

Corollary 2.7: Let E ≤ F ≤ Kn be subspaces. Then ‖mF − mE‖1 =

dimK(F/E).

Proof. By Proposition 2.4,

‖mF − mE‖1 = ‖mF‖1 − ‖mE‖1 = dimK(F ) − dimK(E)

= dimK(F/E).

3. Proof of Theorem 1.4

We recall that there are sundry equivalent definitions of amenability for G-sets:

Lemma 3.1: Let G be a group and let X be a right G-set. The following are

equivalent:

(1) X is amenable;

(2) for every ε > 0 and every finite subset S of G, there exists a finite subset

F of X such that

#(F ∪ FS) − #F

#F
< ε;
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(3) for every ε > 0 and every finite subset S of G, there exists a finite subset

F of X such that

#(F ∪ Fs) − #F

#F
< ε for all s ∈ S;

(4) for every ε > 0 and every finite subset S of G, there exists f : X → R+,

with finite support, such that

‖f − fs‖1

‖f‖1
< ε for all s ∈ S.

The equivalence between (2), (3) and (4) is classical, see e.g. [9, Theorems 4.4,

4.10, 4.13]. The equivalence of these with (1) is proven there in the case X = G;

see also [10].

Similarly, there are various equivalent definitions of amenability for modules:

Lemma 3.2: Let R be an affine algebra and let M be a right module. The

following are equivalent:

(1) M is amenable;

(2) for every ε > 0 and every finite-dimensional subspace S of R, there

exists a finite-dimensional subspace F of M , such that

dimK((F + FS)/F )

dimK(F )
< ε.

Proof. Assume first that M is amenable. Let there be given ε > 0 and a

finite-dimensional subspace S ≤ R. Let F be a finite-dimensional subspace of

M such that dimK(F + Fs) < (1 + ε/ dimK S) dimK F for all s ∈ S. Then

dimK(F + FS) < (1 + ε) dimK F , so (2) holds. The converse implication is

trivial.

Proof of Theorem 1.4. Suppose first that X is amenable. Let ε > 0 be given,

and let S be a finite-dimensional subspace of KG. Let S′ be the support

of S, i.e. the union of the supports of all elements of S; it is a finite sub-

set of G. By Lemma 3.1(1⇒2) there exists a finite subset F ′ of X with

(#(F ′ ∪ F ′S′) − #F ′)/#F ′ < ε. Set F = KF ′, a finite-dimensional subspace

of KX . We have dimK F = #F ′ and dimK(FS) ≤ #F ′S′, so dimK(F + FS) ≤

#(F ′ ∪ F ′S′), whence
dimK((F + FS)/F )

dimK(F )
< ε,

so KX is amenable by Lemma 3.2(2⇒1).
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Suppose now that the KG-module KX is amenable. Let ε > 0 be given, and

let S be a finite subset of G. Set S′ = KS and, using Lemma 3.2(1⇒2), let F be

a finite-dimensional subspace of KX such that dimK((F + Fs)/F )/ dimK(F )< ε
2

for all s ∈ S. Identifying RX with finite-support functions X → R,

set f = mF as defined in (3), page 156. We have dimK((F + Fs)/F ) <
ε
2 dimK(F ), so ‖mF+Fs − mF ‖1 < ε

2 dimK(F ) by Corollary 2.7; and similarly

‖mF+Fs − mFs‖1 < ε
2 dimK(Fs). Now dimK F = dimK(Fs) = ‖f‖1, so we get

‖f − fs‖1 = ‖mF − mFs‖1 ≤ ‖mF+Fs − mF ‖1 + ‖mF+Fs − mFs‖1

<
ε

2
‖f‖1 +

ε

2
‖f‖1 = ε‖f‖1,

and therefore X is amenable by Lemma 3.1(4⇒1).

4. Exhaustively amenable sets and modules

The original definition of amenability for algebras was formulated slightly dif-

ferently [5, §1.11]. We show here that it is equivalent to Definition 1.3 for group

algebras.

Definition 4.1: A right G-set X is exhaustively amenable if there exists an

increasing net (Fλ)λ∈Λ of finite subsets of X such that
⋃

λ∈Λ Fλ = X and for

all g ∈ G:

lim
λ∈Λ

#(Fλ ∪ Fλg)

#Fλ
= 1.

Lemma 4.2: Let G be a group and let X be a right G-set.

(1) X is exhaustively amenable if and only if for every ε > 0 and all finite

sets S ⊆ G and U ⊆ X there exists a finite subset F ⊆ X containing U

such that
#(F ∪ FS)

#F
< 1 + ε.

(2) If X is exhaustively amenable, then it is amenable.

(3) If X is amenable and has no finite orbit, then it is exhaustively

amenable.

Proof. (1) Assume that X is exhaustively amenable, exhausted by a net

(Fλ)λ∈Λ. Let there be given ε > 0 and finite subsets S ⊆ G, U ⊆ X . Let

λ be large enough so that Fλ contains U and #(Fλ ∪ Fλs) < (1 + ε
#S )#Fλ for

all s ∈ S. Then #(Fλ ∪ FλS) < (1 + ε)#Fλ.
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Assume then the converse. Let (gλ)λ∈Λ′ be a well-ordering of G. Let (xλ)λ∈Λ′′

be a well-ordering of X . Set Λ = Λ′ ×Λ′′ with the product order; set g(λ′,λ′′) =

gλ′ and x(λ′,λ′′) = xλ′′ . Let ε : Λ → R+ be a decreasing function with

limλ∈Λ ελ = 0. For every λ ∈ Λ, let Fλ be a finite subset of X , containing

Fµ and xµ for all µ < λ, and such that #(Fλ ∪ Fλgµ) < (1 + ελ)#Fλ for all

µ < λ. This is an exhausting sequence of asymptotically invariant subspaces,

showing that X is exhaustively amenable.

(2) follows clearly from (1).

(3) Let (gλ)λ∈Λ be a well-ordering of G. Let ε : Λ → R+ be a decreasing

function with limλ∈Λ ελ = 0. For every λ ∈ Λ, let Fλ be a finite subset of X ,

such that #(Fλ ∪ Fλgµ) < ελ#Fλ for all µ < λ.

If #Fλ is unbounded, let S ⊆ G and U ⊆ X be finite subsets, and let ε > 0

be given. Let λ be large enough so that ελ ≤ ε
2#S and max{µ : gµ ∈ S} < λ

and #Fλ ≥ 2
ε #(U ∪ US). Set F = Fλ ∪ U ; then

#(F ∪ FS)

#F
≤

#(Fλ ∪ FλS) + #(U ∪ US)

#Fλ
<

ε

2
+

ε

2
= ε,

so X is exhaustively amenable by (1).

Assume therefore that #Fλ ≤ m for all λ ∈ Λ. Then Fλgµ = Fλ for all λ > µ,

as soon as εµ < 1
m . Set F∞ =

⋃
λ∈Λ Fλ.

If F∞ is infinite, let N : Λ → N be an increasing function with limλ∈Λ Nλ =

∞. For all λ ∈ Λ, the set
⋃

µ>λ Fµ is infinite. Let F̃λ be a union of finitely

many Fµ with µ ≥ λ, such that #F̃λ ≥ Nλ. Then we still have F̃λgµ = F̃λ for

all λ > µ, as soon as εµ < 1
m . We are back in the case “#Fλ unbounded”.

Finally, if F∞ is finite, then there exists F ⊆ F∞ such that for every λ ∈ Λ,

there exists µ ≥ λ with Fµ = F . This F is a finite G-orbit.

The following definition generalizes [5, §1.11] to possibly uncountable-dimen-

sional algebras and to modules:

Definition 4.3: Let R be an algebra, and let M be a right R-module. It is exhaus-

tively amenable if there exists an increasing net (Fλ)λ∈Λ of finite-dimensional

subspaces of M such that
⋃

λ∈Λ Fλ = M and for all r ∈ R:

lim
λ∈Λ

dimK(Fλ + Fλr)

dimK Fλ
= 1.

Lemma 4.4: (1) M is exhaustively amenable if and only if for every ε > 0

and all finite-dimensional subspaces S ≤ R and U ≤ M there exists a
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finite-dimensional subspace F ≤ M containing U such that

dimK(F + FS)

dimK F
< 1 + ε.

(2) If M is exhaustively amenable, then it is amenable.

(3) If the KG-module KX is amenable and X has no finite orbits, then KX

is exhaustively amenable.

Proof. (1) Assume that M is exhaustively amenable, exhausted by a net

(Fλ)λ∈Λ. Let there be given ε > 0 and finite-dimensional subspaces S ≤ R,

U ≤ M . Choose a basis (b1, . . . , bd) of S, and let λ be large enough so that Fλ

contains U and dimK(Fλ + Fλbi) < (1 + ε
d) dimK Fλ for all i ∈ {1, . . . , d}. Then

dimK(Fλ + FλS) < (1 + ε) dimK Fλ.

Assume then the converse. Let (rλ)λ∈Λ′ be a well-ordered basis of R. Let

(mλ)λ∈Λ′′ be a well-ordered basis of M . Set Λ = Λ′×Λ′′ with the product order;

set r(λ′,λ′′) = rλ′ and m(λ′,λ′′) = mλ′′ . Let ε : Λ → R+ be a decreasing function

with limλ∈Λ ελ = 0. For every λ ∈ Λ, let Fλ be a finite-dimensional subspace

of M , containing Fµ and mµ for all µ < λ, and such that dimK(Fλ + Fλrµ) <

(1+ελ) dimK(Fλ) for all µ < λ. This is an exhausting sequence of asymptotically

invariant subspaces, showing that M is exhaustively amenable.

(2) follows clearly from (1).

(3) If KX is amenable, then X is amenable by Theorem 1.4; since it has

no finite orbits, it is exhaustively amenable by Lemma 4.2(3). The first part

of the proof of Theorem 1.4 extends easily to show that KX is exhaustively

amenable.

Corollary 4.5: The following are equivalent:

(1) KG is amenable;

(2) KG is exhaustively amenable;

(3) G is amenable.

Proof. (1) and (3) are equivalent by Theorem 1.4, and (1) follows from (2) by

Lemma 4.4(2). If G is finite then there is nothing to prove; otherwise G, as a

right G-set, has a single orbit, which is infinite, so Lemma 4.4(3) applies.
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5. Isoperimetric profile

There is a quantitative estimate of amenability, called the isoperimetric pro-

file (see [12, §VI.1], [4, §5.E] and [13, page 325] for its first appearances): for

G-sets X , this is the function

IX(v, S) = min
F⊆X
#F≤v

#(F ∪ FS) − #F

#F
.

Then by Lemma 3.1(2) amenability of G is equivalent to limv→∞ IG(v, S) = 0

for all finite S ⊆ G. Note that, following the equivalence between (2) and (4)

in Lemma 3.1, we have

(4) IX(v, S) � inf
f∈`1(X)

# support(f)≤v

max
s∈S

‖f − fs‖1

‖f‖1
,

where for two functions I, I ′ we mean by I(v, S) � I ′(v, S) that, for any finite

S ⊆ G, the quotient I(v, S)/I ′(v, S) is bounded away from 0 and ∞ over all

v ∈ N. If X = G is a finitely-generated group, then the �-equivalence class of

IG(v, S) is independent of the choice of generating set S of G, and is denoted

IG(v). For example, IZd(v) � v−1/d.

If X is amenable, a better normalization of its isoperimetric profile (see [3]

and [2]) is

ΦX(n, S) = min{v ∈ N : IX(v, S) ≤ 1/n}.

For two functions Φ, Φ′ we mean by Φ(n, S) ∼ Φ′(n, S) that there exists K ∈ N

with Φ(n) ≤ Φ′(Kn) and Φ′(n) ≤ Φ(Kn) for all n ∈ N. If X = G is a

finitely-generated amenable group, then the ∼-equivalence class of ΦG(n, S) is

independent of the choice of generating set S of G, and is denoted ΦG(n). For

example, ΦZd(n) ∼ nd.

The function ΦX(n, S) is well-defined if and only if X is amenable. A general

result is that ΦX is at least as large as the growth function of X , see [12, §VI.1].

Similarly, for a right R-module M we define

(5) IM (v, S) = min
F⊆M

dimK(F )≤v

dimK((F + FS)/F )

dimK F
.

Then by Lemma 3.2(2) amenability of M is equivalent to limv→∞ IM (v, S) = 0

for all finite-dimensional S < R. We also set

ΦM (n, S) = min{v ∈ N : IM (v, S) ≤ 1/n}.
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We then remark that the proof of Theorem 1.4 shows that IKX(n, KS) ≤

IX(n, S) and ΦKX(n, KS) ≤ ΦX(n, S).

On the other hand, let G = (Z/2Z) o Z be the lamplighter group, generated

for definiteness by ±1 ∈ Z and δ0 : Z → Z/2 the Dirac mass at 0. Then

ΦG(n) ∼ 2nn: examples of subsets F ⊆ G that achieve the minimum in (4) are

of the form

F =
{
(f, t) ∈ G : 1 ≤ t ≤ n and support(f) ⊆ {1, . . . , n}

}
,

with v = 2nn elements and #(F ∪ FS) = (1 + 2
n )v. Nevertheless, ΦKG(n) ∼ n:

examples of subspaces F ≤ KG that achieve the minimum in (5) are of the form

F =

〈 ∑

f :Z→Z/2Z

support(f)⊆{1,...,n}

(f, t) : t ∈ {1, . . . , n}

〉
,

of dimension v = n and with dimK(F + FS) = (1 + 2
n )v.
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