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ABSTRACT

We study amenability of algebras and modules (based on the notion of
almost-invariant finite-dimensional subspace), and apply it to algebras
associated with finitely generated groups.

We show that a group G is amenable if and only if its group ring KG
is amenable for some (and therefore for any) field K.

Similarly, a G-set X is amenable if and only if its span KX is amenable
as a KG-module for some (and therefore for any) field K.

1. Introduction
Amenability of groups was introduced in 1929 by Von Neumann [8]:

Definition 1.1: A (discrete) group G is amenable if it admits a finitely additive
measure 4 : 2 — [0, 1] such that u(G) =1 and u(AU B) = u(A) + u(B) and
w(Ag) = p(A) for all disjoint A, B C G and g € G.

This notion may serve as a witness to the “structure” of groups: either a
group is amenable, in which case it admits a right-translation invariant finitely
additive measure, or it is non-amenable, in which case it admits a “para-
doxical” decomposition in finitely many pieces, which can be reassembled by
left-translation in two copies of the original group; see [14]. More generally:

Definition 1.2: Let G be a group acting on the right on a set X. This action
is amenable if there exists a finitely additive measure p : 2X — [0, 1] such
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that u(X) =1 and u(AU B) = pu(A) + u(B) and p(Ag) = u(A) for all disjoint
A, BC X and g € G.

Under this definition, a group G is amenable if its action on itself by right-
multiplication is amenable. This definition will be reformulated in terms of
Fglner sets (see Lemma 3.1).

1.1. AMENABLE ALGEBRAS. The present note explores the notion of amenabil-
ity for associative algebras, which appeared in [1, 5]. Throughout this note,
K denotes an arbitrary field — although the results easily extend to integral
domains. We shall actually phrase it in the more natural language of modules:

Definition 1.3: Let R be an associative algebra, and let M be a right R-module.
It is amenable if, for every ¢ > 0 and every finite-dimensional subspace S of
R, there exists a finite-dimensional subspace F' of M such that

dimg ((F + Fs)/F)
dlm]K(F)

<e forallseS.

The same definition holds, mutatis mutandis, for left modules.
The main result of this note is the following, proved in §3:

THEOREM 1.4: Let K be any field, and let X be a right G-set. Then X is
amenable if and only if its linear span KX is amenable.

Letting G act on itself by right-multiplication, we obtain

COROLLARY 1.5: Let K be any field, and let G be a group. Then G is amenable
if and only if its group algebra KG is amenable.

The “only if” part of the corollary is claimed in [1], where the “if” part is
proven in case K = C. M. Gromov pointed out to me that the “if” part admits
a simple proof if K has characteristic 0.

Note that there exist non-isomorphic groups GG, H such that ZG and ZH are
isomorphic; the first finite example was found in [7]. Corollary 1.5 therefore
states that passing from a group to its group ring may lose some information,
but does not affect amenability.

1.2. ACKNOWLEDGMENTS. The author is grateful to Yves de Cornulier, Gabor
Elek, Anna Erschler, Misha Gromov, Tracy Hall, Fabrice Krieger, Nicolas
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2. Convex sets

We recall the notion of Steiner point of a convex polytope [6, §14.3]. Let P
be a convex polytope in R"”. For z € P set

C(x,P)={vesS"': (2 —zlv) >0 for all 2’ € P};
this is the set of outer normal vectors of half-spaces containing P and with x
on their boundary. Let £(z, P) denote the normalized content of C(z, P):

A(C(z, P))

L(z,P) = N

where A denotes Lebesgue measure.

Note that if  is not an extremal point of P, then C(x, P) is a singleton, so
£(x,P) = 0. For obvious geometric reasons the number £ (z, P) is called the
exterior angle of P at x.

Recall that the Minkowski sum of two polytopes P, (@ is the polytope
P+Q={x+y: 2 € PyecQ}
LEMMA 2.1: C(z +y, P+Q) = C(x, P) N C(y, Q).
Proof.

Clz+y,PHQ)={vesS" ' : (@' +y — (z+y)v) >0 forall 2’ € P,y € Q}
={vesS"t: (2 —xlv) >0foralla’ € P
and (y' —ylv) >0 for all ¥’ € Q}
=C(z,P)NC(y, Q). |

Let V' denote the set of extremal points of P; then £(x, P) is non-zero if and
only if x € V. The Steiner point of P is

(1) m(P) =Y 4(z,P)x.
zeV
Up to measure-zero sets, {C(x,P) : x € V} is a partition of S*"1, so

> wep £L(x, P) =1 and thus m(P) € P.

PrRoOPOSITION 2.2 ([11]): The function m is the only continuous R"-valued
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function on convex polytopes in R™ that satisfies m(aA+(1 — a)B) =
am(A)+ (1—a)m(B) for any convex polytopes A, B and « € [0, 1], and satisfies
m(gA) = gm(A) for any similarity g : R — R™.

Let F' be a subspace of the vector space K". For any S C {1,...,n}, let
7 : K® — K9 denote the projection (vy,...,v,) — (v;)ies. Define

(2) Xp = {8 : mg restricts to an isomorphism F — ]KS}.
Let e; be the i-th basis vector in R™, and set

(3) Vp = {Zei : Se XF}, Pp = the convex hull of Vi, mp = m(Pp).
€S

LEMMA 2.3: All the v € Vg are {0, 1}-vectors. The sets X and Vp are non-

empty, and P is a non-empty, closed, convex polytope in [0, 1]™.

Proof. The only non-trivial statements are that Xy, and therefore Vr and Pp,
are non-empty. Let S be maximal such that 7g restricts to a surjection F — K5,
If mg|F were not injective, there would be v # 0 in ker(ng|F); let k € {1,...,n}
be a non-zero coefficient of v; then k ¢ S and mgyy is surjective from F' onto
KSYUTk} | since its image contains 0 x K#} and projects onto K. This contradicts
the maximality of S. We therefore have S € Xp. |

The proof of Theorem 1.4 hinges on the following

PRrROPOSITION 2.4: Let E < F < K" be subspaces. Then mp < mp coordinate-

wise.
LEMMA 2.5: Let E < F < K" be subspaces. Then

(1) for every S € Xg there exists T € Xp with S C T}

(2) for every T € Xp there exists S € Xg with S C T}

(3) for every S € Xp, T € Xp and k € S there exists { € T with
S\{k}u{lt € Xg and T\ {{} U{k} € XF.

Proof. (1) Consider D = ker(nrg) N F. By Lemma 2.3, there exists U
{1,...,n} such that 7y : D — KY is an isomorphism. Clearly U NS =
soT=S50UU € Xp.

(2) Apply Lemma 2.3 to the inclusion n7(E) < K”.

-
0,
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(3) Let (Bi)ieqa,....ny be the standard basis of K. By lifting (5;);es through
ms, construct a basis (€;)ics of E such that (e|F8;) = d;; for all 4,5 € S.
Similarly, construct a basis (¢;)ier of F' such that (¢;|5;) = 0;; for alli,j € T.

Since E < F, we may write e, = ) ,.p as¢y; and for all £ € T we have

(exlBe) = D p e awr(Pe|Be) = ay. Therefore

1= (exlBr) = D ae(eelBr) = > (exlBe)(delBr);

LeT LeT
so (€x|Be){¢e|Br) # 0 for some ¢ € T. This implies that (ex|Ge) # 0, so
Ts\({kyufey P B — KS\ RO §s an isomorphism: its image surjects onto K5\{*},
and contains 0 x K&} = TS\ {k}U{e} (Keg). Since TS\ {k}u{¢} Maps onto a space
of dimension #5, it is an isomorphism. We also have (¢¢|08;) # 0, which by
the same argument implies that 7\ (gyuey @ F — KT\UTE} §s an isomor-
phism. |

Proof of Proposition 2.4. For ¢ € [0,1], let P. = (1 — ¢)Pr+ePr be the
Minkowski linear combination of Pg and Pg. It is the convex envelope of
(1 —e)Vg +eVp. Set

Ve={(l—-¢e)z+ey: z € Vg,y € Vp, and = < y coordinatewise}.
LEMMA 2.6: P- is the convex envelope of V..

Proof. If € = 0, this follows from Lemma 2.5(1). If £ = 1, this follows from
Lemma 2.5(2). Suppose therefore ¢ € (0,1). It then suffices to prove that no
point of the form (1 —¢)a + ey with « € Vg, y € Vp and x £ y is extremal.

Given such z, y, choose k € support(z) \ support(y). By Lemma 2.5(3), there
exists £ such that ' := v —ep+e, € Vg and y' := y—ep+er € Vp. Furthermore
k # ¢ because ¢ € support(y). Now

(I-ez+ey=(1-e)((1—e)z+ea’) +e(ey+ (1 —e)y)

is a convex combination of non-extremal points of Pr and Pg, so is not an

extremal point of P.. |

Suppose now ¢ € (0,1). Let a. : V. — Vg be the map (1 — &) + ey — .
It truncates non-1 coordinates down to 0, and therefore satisfies a.(z) < z
coordinatewise for all z € V.. By Lemma 2.5(1) this map is onto. By Lemma 2.6,
if y 2 = coordinatewise then (1 — €)a + ey is not extremal in P., whence
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AMC((1 =€)z +ey, P.)) =0. By Lemma 2.1 we compute

Z L(z,P.) = Z AC(z, F)) — Z MC(z, Pg) N C(y, Pr))

\(Sr—1 \(Sr—1
z€az ' (z) z€az ' (z) ( ) yeVR ( )
_ MC(=, Pg))
= )\(Sn—l) = K(JJ,PE)

We conclude

m(P) =Y Lz P)z= > > Lz P)x+(z-1x))

z€Ve z€VE zGa;l(I)
= Z L(x, Pg)x + Z L(z, P:)(z — as(2))
zcVE zeVe

= m(Pg) + something non-negative
> mp coordinatewise.

The conclusion holds for m(P;) = mp by continuity of m, see Proposition
2.2. |

Note that #S = dimg F for all S € Xp, and ||z||; = dimg F for all x € Vp,
so ||mpll1 = dimg F.

COROLLARY 2.7: Let E < F < K" be subspaces. Then |mp — mg|1 =
dimg (F/E).

Proof. By Proposition 2.4,

[mr —mglly = [mell = [[mell = ding(F) — dimg (E)

= dimg(F/E). ®

3. Proof of Theorem 1.4
We recall that there are sundry equivalent definitions of amenability for G-sets:

LEMMA 3.1: Let G be a group and let X be a right G-set. The following are
equivalent:

(1) X is amenable;
(2) for every e > 0 and every finite subset S of G, there exists a finite subset
F of X such that
#(FUFS)—#F
4F

< €
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(3) for every e > 0 and every finite subset S of G, there exists a finite subset
F of X such that
#(FUFs)—#F
#F
(4) for every e > 0 and every finite subset S of G, there exists f : X — R,

<e forallseS;

with finite support, such that

If — fslla
£l
The equivalence between (2), (3) and (4) is classical, see e.g. [9, Theorems 4.4,
4.10, 4.13]. The equivalence of these with (1) is proven there in the case X = G;
see also [10].

<e forallseS.

Similarly, there are various equivalent definitions of amenability for modules:

LEMMA 3.2: Let R be an affine algebra and let M be a right module. The
following are equivalent:
(1) M is amenable;
(2) for every ¢ > 0 and every finite-dimensional subspace S of R, there
exists a finite-dimensional subspace F' of M, such that
dimg ((F + FS)/F)
dimK(F)

Proof. Assume first that M is amenable. Let there be given ¢ > 0 and a
finite-dimensional subspace S < R. Let F be a finite-dimensional subspace of
M such that dimg(F + Fs) < (1 + ¢/dimg S)dimg F for all s € S. Then
dimg (F + FS) < (1 + €)dimg F, so (2) holds. The converse implication is
trivial. |

Proof of Theorem 1.4. Suppose first that X is amenable. Let ¢ > 0 be given,
and let S be a finite-dimensional subspace of KG. Let S’ be the support
of S, i.e. the union of the supports of all elements of S; it is a finite sub-
set of G. By Lemma 3.1(1=2) there exists a finite subset F’ of X with
(#(F'UF'S") — #F")/#F' < e. Set F = KF’, a finite-dimensional subspace
of KX. We have dimg F' = #F’ and dimg (F'S) < #F'S’, so dimg(F + FS) <
#(F"U F'S"), whence

dimg ((F' + FS)/F) .

dlm]K(F) ’

so KX is amenable by Lemma 3.2(2=1).
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Suppose now that the KG-module KX is amenable. Let € > 0 be given, and
let S be a finite subset of G. Set S’ = KS and, using Lemma 3.2(1=-2), let F' be
a finite-dimensional subspace of KX such that dimg ((F + F's)/F)/ dimg (F) < §
for all s € S. Identifying RX with finite-support functions X — R,
set f=mp as defined in (3), page 156. We have dimg((F + Fs)/F) <
§dimg (F), so |mpyrs —mrpli < §dimg(F) by Corollary 2.7; and similarly
lmpeirs — mrs|1 < §dimg(Fs). Now dimg F' = dimg (F's) = || f||1, so we get

If = fsllh = lmr —mps|li < [mpips —mrel+ [Imeirs —mres|
€ €
< §||f||1 + §Hf|\1 = e[| fll1,

and therefore X is amenable by Lemma 3.1(4=1). |

4. Exhaustively amenable sets and modules

The original definition of amenability for algebras was formulated slightly dif-
ferently [5, §1.11]. We show here that it is equivalent to Definition 1.3 for group
algebras.

Definition 4.1: A right G-set X is exhaustively amenable if there exists an
increasing net (F)\)xea of finite subsets of X such that UAGA Fy, = X and for
all g € G:
I #(Fy\ U Fig)
im ——— 222
AEA #E

LEMMA 4.2: Let G be a group and let X be a right G-set.

=1.

(1) X is exhaustively amenable if and only if for every ¢ > 0 and all finite
sets S C G and U C X there exists a finite subset F' C X containing U

such that
#(FUFS)

4F

(2) If X is exhaustively amenable, then it is amenable.

<1l+e.

(3) If X is amenable and has no finite orbit, then it is exhaustively
amenable.

Proof. (1) Assume that X is exhaustively amenable, exhausted by a net
(Fx)aea. Let there be given € > 0 and finite subsets S C G, U C X. Let
A be large enough so that Fy contains U and #(Fy U Frs) < (1 + %)#F,\ for
all s € S. Then #(F\ U F)\S) < (1 + €)#F).
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Assume then the converse. Let (gx)aeas be a well-ordering of G. Let (23 )xear
be a well-ordering of X. Set A = A’ x A” with the product order; set gy \vy =
gx and wyay = zav. Let € 1 A — Ry be a decreasing function with
limyep ex = 0. For every A € A, let F be a finite subset of X, containing
F,, and z, for all p < A, and such that #(F\ U Fag,) < (1 4 ex)#F)\ for all
1 < X. This is an exhausting sequence of asymptotically invariant subspaces,
showing that X is exhaustively amenable.

(2) follows clearly from (1).

(3) Let (ga)aea be a well-ordering of G. Let € : A — R, be a decreasing
function with limycp €y = 0. For every A € A, let F)\ be a finite subset of X,
such that #(Fy U Fig,) < ex#F) for all p < A.

If #F) is unbounded, let S C G and U C X be finite subsets, and let ¢ > 0
be given. Let A be large enough so that ey < 2;5 and max{p : g, € S} < A
and #F\ > 24#(U UUS). Set F = F) UU; then

#(FUFS) - #(FXUFS)+#UUUS) -
#F #F)\
so X is exhaustively amenable by (1).

Assume therefore that #F\ < m for all A € A. Then F\g, = F) forall A > p,

as soon as €, < % Set Foo = Uyen Fi-

DN
+
[N}

If F is infinite, let N : A — N be an increasing function with limyeca Ny =
co. For all A € A, the set [,
many F), with © > A, such that #F\ > N,. Then we still have F)g, = F\ for
all A > p, as soon as €, < % We are back in the case “#F)\ unbounded”.

Finally, if F is finite, then there exists F' C F,, such that for every A € A,
there exists ;1 > A with F, = F. This F'is a finite G-orbit. [ |

F), is infinite. Let F \ be a union of finitely

The following definition generalizes [5, §1.11] to possibly uncountable-dimen-
sional algebras and to modules:

Definition 4.3: Let R be an algebra, and let M be a right R-module. It is ezhaus-
tively amenable if there exists an increasing net (F))xea of finite-dimensional
subspaces of M such that (J,., £ = M and for all r € R:

lim dlmK(F,\ + F/\T)

= 1.
AEA dimK F)\

LEMMA 4.4: (1) M is exhaustively amenable if and only if for every ¢ > 0
and all finite-dimensional subspaces S < R and U < M there exists a
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finite-dimensional subspace F < M containing U such that

dimg (F + F5S)

<1 .
dimKF te

(2) If M is exhaustively amenable, then it is amenable.
(3) If the KG-module KX is amenable and X has no finite orbits, then KX
is exhaustively amenable.

Proof. (1) Assume that M is exhaustively amenable, exhausted by a net
(Fx)aea. Let there be given € > 0 and finite-dimensional subspaces S < R,
U < M. Choose a basis (b,...,bq) of S, and let A be large enough so that F)
contains U and dimg (F + Fxb;) < (14 §) dimg F for all i € {1,...,d}. Then
dimK(F,\ + F)\S) < (1 + 6) dimg F.

Assume then the converse. Let (ry)iear be a well-ordered basis of R. Let
(mx)renr be a well-ordered basis of M. Set A = A’ x A” with the product order;
set (v ary = and my yry = mar. Let € : A — Ry be a decreasing function
with limyep €y = 0. For every A € A, let F)\ be a finite-dimensional subspace
of M, containing F,, and m,, for all s < X, and such that dimg (Fx + Fir,) <
(1+e€y) dimg (Fy) for all i < A. This is an exhausting sequence of asymptotically
invariant subspaces, showing that M is exhaustively amenable.

(2) follows clearly from (1).

(3) If KX is amenable, then X is amenable by Theorem 1.4; since it has
no finite orbits, it is exhaustively amenable by Lemma 4.2(3). The first part
of the proof of Theorem 1.4 extends easily to show that KX is exhaustively
amenable. |

COROLLARY 4.5: The following are equivalent:
(1) KG is amenable;
(2) KG is exhaustively amenable;
(3) G is amenable.

Proof. (1) and (3) are equivalent by Theorem 1.4, and (1) follows from (2) by
Lemma 4.4(2). If G is finite then there is nothing to prove; otherwise G, as a
right G-set, has a single orbit, which is infinite, so Lemma 4.4(3) applies. |
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5. Isoperimetric profile

There is a quantitative estimate of amenability, called the isoperimetric pro-
file (see [12, §VL.1], [4, §5.E] and [13, page 325] for its first appearances): for
G-sets X, this is the function

Then by Lemma 3.1(2) amenability of G is equivalent to lim, .. Ig(v,S) =0
for all finite S C G. Note that, following the equivalence between (2) and (4)
in Lemma 3.1, we have

: If — fslh
4 Ix(v,S) = inf max ————,
@ ©.5) redix) ses || flh
# support(f)<v

where for two functions I, I’ we mean by I(v,S) =< I'(v,S) that, for any finite
S C G, the quotient I(v,S)/I'(v,S) is bounded away from 0 and oo over all
v € N. If X = @ is a finitely-generated group, then the <-equivalence class of
I¢ (v, S) is independent of the choice of generating set S of G, and is denoted
Ic(v). For example, Iz (v) < v/,

If X is amenable, a better normalization of its isoperimetric profile (see [3]
and [2]) is

®x(n,S) =min{v e N: Ix(v,5) <1/n}.

For two functions ®, ' we mean by ®(n, S) ~ ®’(n, S) that there exists K € N
with ®(n) < ®(Kn) and ®'(n) < ®(Kn) for alln € N. If X = G is a
finitely-generated amenable group, then the ~-equivalence class of ®¢(n,S) is
independent of the choice of generating set S of GG, and is denoted ®¢(n). For
example, ®y4(n) ~ nt.

The function ®x (n,S) is well-defined if and only if X is amenable. A general
result is that ®x is at least as large as the growth function of X, see [12, §VL.1].

Similarly, for a right R-module M we define

B . dimg((F + FS)/F)
dimg (F)<v

Then by Lemma 3.2(2) amenability of M is equivalent to lim,_,o Ias(v,.S) =0
for all finite-dimensional S < R. We also set

®pr(n,S) =min{v €e N: Iy(v,5) < 1/n}.
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We then remark that the proof of Theorem 1.4 shows that Ixx(n,KS) <
Ix(n, S) and (I)]Kx(n, KS) S @X(n, S)

On the other hand, let G = (Z/2Z) 1 Z be the lamplighter group, generated
for definiteness by +1 € Z and dy : Z — Z/2 the Dirac mass at 0. Then
D (n) ~ 2"n: examples of subsets F' C G that achieve the minimum in (4) are
of the form

F={(ft)eG:1<t<nand support(f) C {1,...,n}},

with v = 2"n elements and #(F U FS) = (1+ 2)v. Nevertheless, Pxg(n) ~ n:
examples of subspaces F' < KG that achieve the minimum in (5) are of the form

F< Z (f,t):te{l,...,n}>,

fZ—7)27
support(f)C{1,...,n}

of dimension v = n and with dimg (F + FS) = (1 + 2)v.
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